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ABSTRACT

Low-constraint toughness tests have been increasingly used in pipeline flaw assessment. A
number of protocols have been published using a test employing a clamped single-edge
tension (SE(T)) specimen with the distance between the clamps H equal to ten times the
specimen width W, and specimen width W equal to thickness B. For this geometry, the
constraint over the bulk of the specimen varies between plane stress and plane strain. This
affects the elastic compliance, commonly used to estimate crack size. It was the intent of
the present work to assess the effects of constraint on the compliance and to identify the
best combination of compliance equation and modulus to estimate crack size from CMOD
compliance where CMOD is the crack mouth opening displacement. To do this, values of
compliance from finite element analyses were provided by the authors of this paper from
three separate laboratories. 2D plane strain, 3D plane-sided, and 3D side-grooved specimens
were analyzed. The data were used to assess available compliance equations and to propose
a new one for the specific geometry of interest in this work.

Keywords
low-constraint toughness testing, single-edge tension SE(T), single-edge-notch tension (SENT), crack
size measurement, CMOD unloading compliance
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Nomenclature

a = crack size
B = specimen thickness
B = effective thickness, Bog= B—(B—By)*/B
By =net thickness, By = B-(total side groove depth)
C =CMOD compliance, ACMOD/AP
CMOD = crack mouth opening displacement
E =Young’s modulus of elasticity
ECA = Engineering Critical Assessment
E ¢ = effective elastic modulus
Epe =E/(1 - 17)
Epo =E
FEA =finite element analysis
f(u) = compliance equation giving a/W as a function of u
H = distance between grips (“daylight”)
J =J-integral
J-R =] resistance
P =force (load)
SE(B) = single-edge bend
SE(T) =single-edge tension (sometimes denoted SENT for
single-edge-notch tension)
u =1/(1+ /(BettCEf))
W = specimen width
o = constraint parameter, & = (Eegr = Epio)/(Epi; — Epio)
v = Poisson’s ratio

Introduction

To perform engineering critical assessment (ECA) of a flaw in a
pipeline, it is necessary to measure the toughness. For surface
flaws, it is well recognized that traditional techniques to mea-
sure the size-independent material toughness are highly con-
servative in this application and may unnecessarily penalize the
material. It is preferable to use test techniques that better repro-
duce the actual constraint at the tip of the flaw. Consensus has
been building on the use of single-edge tension (SE(T) (also
referred to as single-edge-notch tension, SENT) specimens for
this purpose. The first standard to emerge was DNV-RP-F108
[1], that recommended a geometry with H/W = 10, where H is
the distance between the grips and W is the specimen width,
and B/W =2, where B is the specimen thickness, although other
geometries (1 <B/W <5) were allowed. The specimens were
not side-grooved, and a multi-specimen procedure was used
to generate J-R curves. More recently, single-specimen test pro-
cedures [2,3] have been developed in which the crack size is
monitored by unloading compliance or electric potential drop
techniques.

The use of the term “constraint” requires some discussion.
It is used in fracture toughness testing to describe the degree of

triaxiality at a given location in a specimen, notably in the
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vicinity of a crack tip. Triaxiality is highest near the crack tip,
where the stress gradients are high and Poisson contractions in
the direction of the crack front are restricted. However, at the
free surfaces of the specimen, the stress normal to the surface is
necessarily zero. It follows that triaxiality and constraint is
smaller for a thin specimen than for a thick one. Similarly, for a
plate-like or rectangular specimen, remote from a crack tip or
other stress concentrator, the through-thickness constraint is
small, hence approximating a state of plane stress. Conse-
quently, in a typical fracture toughness test specimen, the degree
of constraint varies from near-plane-strain to near-plane-stress
depending on the location in the specimen. Modelling such a
specimen assuming either plane strain or plane stress conditions
in the calculations generates only an approximation to the
actual stress state, giving either an upper or lower bound to the
mechanical variables. The selection of an appropriate bound for
calculations to represent the condition of a particular test speci-
men, i.e,, a plane stress or plane strain state, is a central problem
in applying FEA in fracture mechanics.

The unloading compliance technique for measurement of
crack size incorporates a relationship between crack size and
compliance, most conveniently the CMOD compliance where
CMOD is the crack mouth opening displacement:

a/W = f(u) m
with

u = g(Befr CEefr) )

where:

C=the CMOD compliance (C=ACMOD/AP), and

Betr, Eoir=the “effective” thickness and elastic modulus,
respectively.

B depends on side-groove depth, and E.; depends on
specimen constraint. We shall call f{u) the “compliance equa-
tion,” and BCE the “normalized compliance.” Note that it is
necessary for accurate estimation of a/W to correct for rotation
that occurs during loading as a result of plastic deformation,
primarily in the ligament, and causes the load line to move
toward the centre of the ligament [4]; however, this will not be
discussed in detail here. A number of equations for f{u) have
been proposed in the literature, as reviewed recently by Wang
and Omiya [5] and Huang and Zhou [6]. After detailed assess-
ment, Wang and Omiya recommended an equation published
by Cravero and Ruggieri [7], whereas Huang and Zhou favored
an equation from John and Rigling [8]. However, neither
Refs. [7] nor [8] contained the data for compliance as a function
of a/W upon which the equations were based, thus it is difficult
to judge their accuracy. In fact, there is little difference between
the results of the published equations provided they are treated
as originally intended. This refers in particular to the choice of
effective elastic modulus E.g. In some instances the “plane stress
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TABLE 1 Results of FEA of 2D plane strain specimens from three in-
dependent sources (A), (B), (C); the variable Cin BetCEpye
is the 2D plane strain CMOD compliance and the fifth
column reports the average of the values in columns 2 to

4,
BeffCEpls
2D Plane Strain Source

a/W (A) (B) (©) Average
0.05 0.295 0.295
0.1 0.609 0.614 0.613 0.612
0.2 1.393 1.402 1.403 1.399
0.3 2.568 2.555 2.560 2.561
0.4 4.315 4.350 4.366 4.344
0.5 7.169 7.233 7.277 7.226
0.6 11.801 11910 12.018 11910
0.7 19.269 19.392 19.642 19.434
0.8 30.573 30.768 31.295 30.879
0.9 46.423 47.375 46.899

modulus,” E, is preferred, while in others the “plane strain mod-
ulus,” E/(1 — %)), is used’. The modulus is sometimes written
as E', with E' =E for plane stress and E' = E/(1 — 1*) for plane
strain. We shall refer to these moduli as E,;, and Ej, respec-
tively. Indeed, for the test geometry analyzed in this work - a
clamped specimen with square B by B cross section, where B is
the specimen thickness — the compliance of a three-dimensional
(3D) specimen lies between that of a two-dimensional (2D)
specimen in either plane stress or plane strain. This is not a
unique situation; for example, in early editions of ASTM
E1820-15a [9], the use of E,;, was recommended in the compli-
ance equation for single-edge bend (SE(B)) specimens, but this
was recently changed to E,j,. The actual state of constraint in a
3D SE(B) specimen has been investigated by Wang et al. [10]
and by Shen et al. [11], with the latter introducing the idea of
using an “effective modulus” to account for the fact that the
constraint in 3D specimens lies between plane stress and plane
strain.

It is the intent of the present work to assess the effects of
constraint in a clamped SE(T) specimen with H/W =10 and
W = B, where H is the distance between the clamps, and W and
B are the specimen width and thickness, respectively, which is
the most popular geometry currently being studied for stand-
ardization. The effect of side grooves on compliance is also
assessed, since side grooves are used in practice to maintain
crack-front straightness during crack growth. The objective is to
suggest the best combination of compliance equation and mod-

ulus to estimate crack size from CMOD compliance. To do this,

71t is straightforward to demonstrate, for a tensile specimen loaded in the
y direction, that the effective modulus o,,/z,, is E for an unconstrained
(plane stress) specimen and E/(1 — V%) for a specimen that is constrained
to be in plane strain in the x (or z) direction.

TABLE 2 Results of FEA for 3D plane-sided specimens from three
independent sources (A), (B), (C); the variable Cin
BestCEp); is the 3D CMOD compliance of plane-sided
specimens and the fifth column reports the average of
the values in columns 2 to 4.

BeﬂCEpls
3D Plane-Sided Source
a/W (A) (B) (©) Average
0.05 0.295 0.295
0.1 0.618 0.624 0.621 0.621
0.2 1.445 1.456 1.453 1.451
0.3 2.665 2.691 2.693 2.683
0.4 4.566 4.613 4.622 4.600
0.5 7.607 7.694 7.723 7.675
0.6 12.547 12.698 12.775 12.674
0.7 20.559 20.761 20.935 20.752
0.8 33.189 33.569 33.379
0.9 50.568 51.181 50.874

values of compliance using finite element analysis (FEA) have
been provided by the authors from three separate laboratories
and the data have been used to assess available compliance
equations. 2D plane strain, 3D plane-sided, and 3D side-

grooved specimens have been analysed®.

Compliance Data

FEA calculations were performed at the authors’ laboratories
using their preferred software. A variety of software was used,
including Abaqus, ADINA, and WARP3D. Standard proce-
dures were used in elastic FEA. The results are not expected to
be sensitive to details of the procedures because elastic FEA cal-
culations are well established. Indeed, mesh refinement would
be important if details of the crack-tip stress distribution were
to be reported, which is not the case here. Also, no restrictions
were placed on side-groove geometries (notch root radius and
included angle) apart from depth, in conformity with test prac-
tice; standards typically allow a range of side-groove geometries.
Indeed, it has been found that the side-groove root radius in
particular has a strong influence on the shape of a growing
crack. However, it is not expected that these variables would
have a significant effect on the CMOD compliance of a straight-
fronted crack as assumed in this work, and this is borne out by
the fact that FEA results from all laboratories were remarkably
consistent.

8The values assumed for the elastic modulus E differed between the labo-
ratories, ranging from 200 to 210 GPa (bracketing the value of 205 GPa
at room temperature recommended by the ASME Boiler and Pressure
Vessel Code). This has no effect on the values of Eq 2 because an increase
in modulus is compensated by a decrease in compliance and the product
remains constant.
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TABLE 3 Results of FEA for 3D specimens, plane-sided (3D pl-
sided) and side-grooved to a total side-groove depth (%
of the width) of 10 % (3D-sg 10 %), 15 % (3D-sg 15 %)and
20 % (3D-sg 20 %) from two independent sources (A),
(C); the variable Cin BetCEpy is the 3D CMOD
compliance.

B effCEplz;

Source

3D (A) ©

a/W 3D pl-sided 3D-sg10% 3D-sg20% 3D pl-sided 3D-sg 15 %

0.05 0.295 0.288
0.1 0.618 0.614 0.603 0.621 0.611
0.2 1.445 1.443 1.437 1.453 1.452
0.3 2.665 2.670 2.676 2.693 2.710
0.4 4.566 4.583 4.606 4.622 4.672
0.5 7.607 7.643 7.687 7.723 7.825
0.6 12.547 12.610 12.668 12.775 12.945
0.7 20.559 20.646 20.661 20.935 21.156
0.8 33.569 33.812
0.9 51.181 51.156

2D PLANE STRAIN AND 3D PLANE-SIDED SPECIMENS
Table 1 shows the results (values of normalized CMOD compli-
ance, BegCEyy,, for 0.05<a/W<0.9) from the three sources
((A),(B), (C)) for the case of 2D plane strain (note that in
this case B is, of course, B). The agreement is good, with the
average absolute error for the cases where all three laboratories
provided data (0.1 < a/W <0.8), equal to 0.50 %.

Table 2 shows results for the 3D plane-sided specimens.
Again, agreement is good, with the average absolute error for
0.1 <a/W <0.7 equal to 0.48 %.

The values of the normalized compliance for the 2D plane
strain case differ from those of the 3D case, as expected. The
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difference increases as a/W increases. We shall comment on
this later in the context of a transition from primarily plane

strain at small a/W to primarily plane stress at large a/W.

EFFECT OF SIDE GROOVES

Table 3 shows results for 3D plane-sided and side-grooved
specimens from the two laboratories that provided data for
side-grooved specimens. In this case, the thickness has been
adjusted using the relation (as found in ASTM E1820-15a [9]):

Byt =B — (B—By)*/B ®

The thickness adjustment is highly effective, the average differ-
ence (in absolute values) in B.gC for plane-sided and side-
grooved specimens being only 0.70 %. This is consistent with
the conclusions of Donato and Moreira [12], who showed that
the effective thickness calculated from Eq 3 is very accurate for
clamped SE(T) specimens with H/W =6 and W/B=2.

Effective Modulus

As noted above, the effective modulus depends on specimen
constraint. It is well known that the ratio between the 2D plane
strain and plane stress compliances is simply Ejj5/E,;, as dis-
cussed in detail by Tyson et al. [13]. That is, CyisEpis = CpicEpe.
In other words, at the same value of a/W, the normalized com-
pliance values in the limits of plane strain and plane stress, i.e.,
BC,pysEpy; and BCpyoE,4, respectively, are the same. This enables
the definition of an “effective modulus” for the 3D case for a
given a/W, ie, BegCEer= BetCprEpl; = BetCpigEpis. Any of
these three parameters, when used to calculate u from Eq 2
above, should yield the same value of a/W from Eq 1. It has
been found convenient, for curve-fitting purposes, to use for the

function g of Eq 2 the following equation:

TABLE 4 Values of effective modulus (normalized by £), E.+/E, derived from compliances for 2D plane strain (average values from Table 1) and 3D
plane-sided specimens (average values from Table 2), and constraint parameter «. The fifth column reports the average of the values in col-
umns 2 to 4, and the seventh column reports the average of the values in the sixth column for a/W values between 0.1 and 0.7.

Eeff/E o
3D Plane-Sided Source

a/W (A) (B) (©) Average Average 0.1 <a/W<0.7
0.05 1.097 1.097 0.98

0.1 1.083 1.081 1.084 1.083 0.84 0.47
0.2 1.059 1.058 1.061 1.059 0.60

0.3 1.059 1.043 1.044 1.049 0.49

0.4 1.039 1.036 1.038 1.038 0.38

0.5 1.036 1.033 1.035 1.035 0.35

0.6 1.034 1.031 1.034 1.033 0.33

0.7 1.03 1.026 1.031 1.029 0.29

0.8 1.019 1.024 1.022 0.22

0.9 1.009 1.017 1.013 0.13
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TABLE 5 Values of a/W for 2D plane strain specimens calculated from alternative compliance equations, showing the differences from the 2D plane
strain (average) results in Table 1. The fourth and seventh columns report the averages of the values in the third and sixth columns, respec-

tively, for a/W values between 0.1and 0.7.

a/W from Cravero and Ruggieri Eq 6

a/W from John and Rigling Eq 7

2D Plane Strain Specimens

Average Difference (%)

Average Difference (%)

a/W FEA Using Ey; Difference (%) 0.1<a/W<0.7 Using Ey; Difference (%) 0.1<a/W<0.7
0.05 0.03567 —28.67 0.03976 —20.47
0.1 0.10034 0.34 0.40 0.09945 —0.55 —0.24
0.2 0.20080 0.40 0.20066 0.33
0.3 0.30197 0.66 0.29952 —0.16
0.4 0.40162 041 0.39915 —0.21
0.5 0.50169 0.34 0.49951 —0.10
0.6 0.60202 0.34 0.59714 —0.48
0.7 0.70244 0.35 0.69659 —0.49
0.8 0.79914 —0.11 0.80144 0.18
0.9 0.88686 —1.46 0.89783 —0.24
&(BerCEetr) = 1/(1 + /(Ber CEefr) ) (= 1) @ and from John and Rigling9 [8]:

It follows from the above that the effective modulus can be
derived for the 3D case using Eeg/E,i. = C,;/C or, equivalently,
Eeg/ E= (Ep1,/E)(Cy1/C). This relation has been used, assuming
v=0.3, so that E,;, = E/(1 — 1?) = E/0.91, to calculate the values
of E.¢/E shown in Table 4. It is convenient to define a parameter
o such that o =0 and 1 for conditions of plane stress and plane
strain, respectively, i.e.:

o = (Eetr — Epio) / (Epte — Epio) (5)

Values of o are reported in Table 4. Note that the values of o
decrease systematically as a/W increases, implying a transition
in constraint from primarily plane strain to primarily plane
stress. In the region of greatest interest, i.e., 0.1 <a/W < 0.7, the
average value of « is slightly less than 0.5, implying that in this
range of a/W, the effective modulus is closer to plane stress

than to plane strain.

Alternative Compliance Equations

As noted above, there is some disagreement as to whether the
compliance equation of Cravero and Ruggieri [7] or that of John
and Rigling [8] is more accurate. A comparison of the two equa-
tions is made in Table 5. The values of a/W have been calculated
using the average values of BtCp;.Ep;; for 2D plane strain speci-
mens (Table 1) in the respective compliance equations:

from Cravero and Ruggieri [7]:

a/W = 1.6485 — 9.1005u + 33.025u* — 78.467u’
+97.344u — 47.227w° ©)

a/W = —0.41881(1/u) + 0.48575(1/u)” — 0.16556(1 /u)’
+0.027639(1/u)* — 0.0022859(1/u)’
+0.000074897(1/u)® @)

If the compliance equations were 100 % accurate, the values of
a/W calculated from them would yield the exact values of a/W
used in the finite element calculations, i.e., the difference would
be zero (as it would also be if the plane stress values of BCE, i.e.
BCpisEyls> were used in comparison with the 2D plane stress
data). The differences in the third and sixth columns of Table 5
reflect the accuracy of the two equations in giving the correct
values of a/W using the average values of the normalized com-
pliance BC,Ep; found from the FEA calculations (Table 1).
Both Eqs 6 and 7 are quite accurate, with the former yielding
slight overestimates of a/W and the latter slight underestimates
in the range 0.1 <a/W <0.7.

We have seen in Table 4 that the effective modulus for 3D
plane-sided specimens in the a/W range of most interest is
slightly closer to plane stress than to plane strain, implying that
the preferred normalized compliance should be B.gCE;,. We
turn now to the results of using these calibration equations with
Eft=Epj; =E in the normalized compliance B.CE,,, with C
being the 3D (FEA) specimen compliance. The results are

Note that because the individual terms in the right-hand side of this
equation are larger than the resultant number in the left-hand side (i.e.,
a/W is calculated as a small difference between large numbers), it is vital
to retain a sufficient number of significant figures in the coefficients on
the right-hand side. Unfortunately, in the paper of Huang and Zhou [6]
the coefficients in the last two terms were truncated. It is necessary in the
John and Rigling equation to retain at least five significant figures in the
coefficients as in Eq 6.
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TABLE 6 Values of a/W for 3D specimens calculated from alternative compliance equations with effective modulus Eess = £y, = £, showing the differ-
ences from the 3D results in Table 2. The fourth and seventh columns report the averages of the values in the third and sixth columns,

respectively, for a/W values between 0.1 and 0.7.

a/W from Cravero and Ruggieri Eq 6

a/W from John and Rigling Eq 7

3D Plane-Sided Specimens

Average Difference (%)

Average Difference (%)

a/W FEA Using Eyj» Difference (%) 0.1 <a/W<0.7 Using Eyj» Difference (%) 0.1<a/W<0.7
0.05 0.02663 —46.75 0.03383 —32.33
0.1 0.09291 —7.09 —2.40 0.09173 —8.27 —3.06
0.2 0.19226 —3.87 0.19231 —3.84
0.3 0.29337 —2.21 0.29104 —2.99
0.4 0.39446 —1.38 0.39193 —2.02
0.5 0.49492 —1.02 0.49279 —1.44
0.6 0.59550 —0.75 0.59085 —1.52
0.7 0.69649 —0.50 0.69044 —1.37
0.8 0.79568 —0.54 0.79762 —0.30
0.9 0.88415 —1.76 0.89455 —0.61

shown in Table 6. Both equations underestimate the crack size,
by a few % in the range 0.1 <a/W <0.7. In this case, the equa-
tion of Cravero and Ruggieri is somewhat better than that of
John and Rigling. This is consistent with the results of Table 5;
using the plane stress modulus (E) has made the underestimates
of John and Rigling even more marked, but the decrease in a/W
resulting from the use of the plane stress modulus has compen-
sated for the overestimated values (when using the plane strain
modulus) of Cravero and Ruggieri. The conclusion from Table 6
must be that the Cravero and Ruggieri equation is to be pre-
ferred when the plane stress modulus is used.

However, it is evident from Table 6 that even using the
preferred equation (of Cravero and Ruggieri) there is still an
average difference (underestimate) of 2.4 % when using the
plane stress modulus to calculate a/W of 3D plain-sided speci-
mens. If the plane strain modulus were used instead, the corre-
sponding average errors would be 273 and 2.08 %
(overestimates) for the Cravero and Ruggieri and John and
Rigling equations, respectively. Fortuitously then, the John and
Rigling equation with the plane strain modulus yields the
most accurate values of a/W. The corollary is that use of the
plane strain modulus with these alternative equations leads to
lower resistance (R) curves, i.e., conservative measures of the
toughness, although with a systematic error of the order of two
to three %.

We have seen in Table 4 that the effective modulus is closer
to plane stress than to plane strain for 0.1 <a/W <0.7. When
the plane stress modulus is used to estimate the value of u,
then the Cravero and Ruggieri equation yields the most accurate
values of a/W. However, even in this case there remains an
underestimate of average (absolute) value equal to 2.4 %,

ranging from 7.09 % (underestimate) at a/W=0.1 to 0.5 %
(underestimate) at a/W =0.7. These are not large errors, but if
considered unacceptable, then it is possible to deduce values of
the effective modulus that reduce the errors even further. This
can be done by calculating E.g values which, when used to
calculate u and substituted in the Cravero and Ruggieri equa-
tion, give accurate values of a/W (compared with the FEA
results). E.¢ is a function of u (see Eq 2), and finding values of u
by trial and error that give correct values of a/W for 3D plane-
sided specimens when used in the Cravero and Ruggieri equa-
tion enables calculation of corresponding values of BCE.. It is
then straightforward to deduce E.4/E by dividing this result by
the values of BCE,;, (= BCE) for this geometry from the FEA
calculations. Next, o may be found by rearranging Eq 5 to give:

o= (1/v* —1)(E/E — 1) ®

As noted above, =0 and 1 for conditions of plane stress and
plane strain, respectively. Next, fitting these values to a power-

law equation, we find
o = 0.2546 — 0.9873u + 3.4748u° ©)

Values of E.¢ can then be found by rearranging Eq 8 to give
Eer=E(1+ (V*/(1 — ¥ o= E(1+0.09890) for v =0.3. These
values can then be used to estimate improved values of a/W
from measured compliance values. In this way, it can be shown
that the average error in a/W over the range 0.1 <a/W <0.7
can be reduced to 0.09 %.

Better still, for this particular clamped-specimen SE(T) test
geometry (H/W=10, W/B=1), the FEA results for the
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FIG. 1 Curve fit of Eq 10. Diamond-shaped points plot the values of u, using
the definition of u (Egs 2 and 4), at given values of /W using the
average 3D plane-sided FEA data shown in Table 2 and the plane-
stress modulus E to calculate BeCEef. The result of the curve-fit is the
compliance equation, Eq 10, given in the figure along with the R?

value.
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compliance can be fitted directly to a compliance equation.
Using the plane-stress modulus E to calculate B.gCE.s and
inserting this in the equation for u, the result of the curve-fit
using the average 3D FEA data shown in Table 2 is the compli-

ance equation':

a/W = 1.5999 — 8.3652u + 29.0441* — 68.0131°
+ 84.295u* — 41.054u° (10)

This equation yields an absolute error in a/W of 0.01 % for
0.1 <a/W<0.7, and would seem to be the simplest way of
accurately calculating a/W from CMOD compliance, implicitly
taking into account the change in constraint between shallow
and deep cracks. It must be emphasized, however, that this
equation is valid only for the stated conditions and should not
be used for other geometries. The curve fit, with Eq 10 and R?,
is shown in Fig. 1.

The effect of using this “best-fit” equation can be illustrated
by comparing the values of a/W calculated from Eq 1 with
values calculated from the Cravero and Ruggieri equation (Eq
6), with the latter derived from the plane strain or plane stress
limits of the variable u (Eq 2 and Eq 4). The errors are shown in
Fig. 2. It is evident that the Cravero and Ruggieri equation
brackets the correct a/W values when the plane strain and plane

1%Note that the choice of modulus to use in calculating BegCE.g from the
FEA data, either the plane-stress or plane-strain modulus, is arbitrary.
Either will generate accurate values of a/W, although obviously requiring
different coefficients in Eq 10. The plane-stress modulus is reccommended
because it does not involve Poisson’s ratio and because it is the effective
modulus used in ASTM E1820-15a [9]. Note also that the effect of side
grooves is accounted for in Eq 3. In practice, the measured compliance
for side-grooved specimens is adjusted to the plane-sided value using
Eq 3 and then used to calculate u, and finally to calculate a/W using
Eq 10.

FIG. 2 Error (% difference) between value of /W calculated from alternative
compliance equations and from direct FEA as a function of a/W.
Alternative compliance equations use: Eq 10 with the plane-stress
modulus, £, (triangular points); and the Cravero and Ruggieri Eq 6 in
the limit of plane strain (diamond-shaped points) or plane stress
(square-shaped points), i.e., with the variable v (Egs 2 and 4)
calculated using Ear = £/(1 — 1) or Ewst = E, respectively).
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stress moduli are used, and that Eq 10 works well (as it should,
since it was obtained by fitting the FEA data). The errors inher-
ent in the plane-stress or plane-strain approximations can range
between ~—7 % and ~+4 %, respectively, over the range of val-
ues in Fig. 2, but are of the order of a few % (~*4 %) in the
region of most practical interest (0.2 <a/W <0.6).

Discussion

This note is intended to contribute to the selection of equations
to be used for calculation of crack size in a proposed toughness
test standard using clamped SE(T) specimens with H/W =10
and W/B=1, with side grooves of total depth 10 % (5 % each
side). The normal range of a/W for practical purposes will be
0.2<a/W<0.6, and to ensure that this is covered adequately,
the present paper has focused on the range 0.1 <a/W <0.7. It
has been shown that over this range, the constraint condition
for the CMOD compliance C lies between plane strain for shal-
low cracks and plane stress for deep cracks, being slightly closer
to plane stress over the target range of a/W (0.1 <a/W <0.7).
In the literature, compliance equations are derived from
FEA results, normally in the limit of plane strain, that are
subsequently fitted with a power-law equation of the variable
u=1/1+ \/ (BefCEefr)). For the plane strain condition,
Eeg=Ep.=E/(1 — %), and for the plane stress condition,
Ee¢= Ep,; = E; a/W is the same function of u in either case pro-
vided the relevant value of E.g is used in u. By is the “effective
thickness,” B.g=B—(B—By)*/B (see Eq 3), where B is the
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specimen thickness and By is the net thickness, i.e., the speci-
men thickness minus the total side-groove depth.

The results in this paper draw on independent FEA calcula-
tions from three laboratories. It has been shown in these
calculations that the use of the effective thickness (Eq 3) for
side-grooved specimens provides an accurate correction for the
compliance'’, and consequently attention has been focused on
plane-sided specimens (2D and 3D) to deduce the best-fitting
equations. Evidently from the paragraph above, the experimen-
tal compliance will lie between plane stress and plane strain, so
that to deduce a/W from the experimental compliance, a value
of E.q between E,j, and E,, should be used to give accurate
results. For practical purposes, it has been recommended by
several authors that the plane stress modulus be used. For com-
parison, in the current edition of ASTM E1820 [9] the plane-
stress modulus Ej; =E is used in calculating u for SE(B) and
C(T) specimens. The plane-strain value E,;, was used in previ-
ous editions, presumably because the crack tip is in primarily
plane strain constraint. The predominance of plane stress in the
ASTM test is reinforced by the fact that for the geometry of
specimens in ASTM E1820, W/B=2, i.e. the specimens are
thinner than for W/B =1 (the geometry of interest in this work)
and hence closer to plane stress than the specimens studied
here. Clearly there is some ambiguity in the choice in that the
constraint varies depending on the specimen geometry, and
hence there is uncertainly in choosing the best value of E.g to
use in calculating u and a/W. The present paper has been pre-
pared to illuminate the situation for BxB SE(T) specimens with
and without side grooves.

Notably, the effective constraint is nearly plane strain for
shallow cracks in BxB SE(T) specimens. This is somewhat sur-
prising, because the bulk of the specimen is in plane stress for
this condition. A similar phenomenon has been noted for
SE(B) specimens [11] and explained as a reflection of the fact
that for a shallow crack, the CMOD reflects the constraint con-
dition at the crack tip, and this condition is close to plane
strain.

Comparison With Experiment

There have been no experiments reported to investigate specifi-
cally the relation between measured and predicted crack size for
SE(T) specimens. However, a round robin coordinated by
CANMET has been carried out [14]. These results have been
revisited in light of the current work. Unfortunately, the com-
parison proved inconclusive. The round robin used the compli-
ance function of Shen and Tyson [4], which is practically
identical to that of Cravero and Ruggieri [7], with the plane
stress modulus E used as E.p. In the experiments, the final

""The variation of the compliance with side-groove depth is well
described by B, i.e., the compliance for plane-sided specimens is B./B
times the compliance of a side-grooved specimen.

TYSON ET AL. ON ON SE(T) EFFECTIVE MODULUS

measured crack size (a/W) varied between 0.44 and 0.62.
Comparing calculated with measured crack size, on average
the calculated crack size overestimated the measured size by
about 1 %, with a standard deviation of 4.4 %. Application of
the recommended compliance function (Eq 10) would have
increased the overestimation still further by about 1 %, clearly
an “improvement” in the wrong direction. However, the scatter
is such that this result cannot be considered conclusive. It is fur-
ther complicated by the fact that the experimental results
required corrections for rotation and for side-groove depth,
both of which introduce small uncertainties, and that crack
fronts in the tests invariably showed some degree of curvature.
It would have been preferable to use the initial crack size in the
comparison because this would eliminate the need for a rotation
correction. However, this was also not conclusive because of ex-
perimental difficulties experienced by most labs participating in
the round robin in accurately measuring the initial compliance.
It was found that the compliance data frequently corresponded
to an apparent negative crack growth, which is obviously non-
physical. The solution was to calculate an improved estimate of
the initial crack size a, following the procedure described in
ASTM E1820 [9]. Values of initial crack size ranged between
0.33 and 0.46. Comparing calculated with measured crack size,
the average result was that the calculated initial crack size over-
estimated the measured size by about 3.4 % with a standard

deviation of 4.7 %, again leading to an inconclusive result.

Conclusions

1. For calculation of a/W using SE(T) specimens of square
cross section (W/B = 1), using the plane stress modulus E
in the compliance equation proposed by Cravero and
Ruggieri [7] yields values (underestimates) within 7 % of
the correct value over the range 0.1 <a/W <0.7 with an
average error of 2.4 %. This leads to slightly non-
conservative R curves in comparison with the curves that
would result from use of the plane strain modulus.

2. The use of the effective thickness B.g=B—(B—By)*/B
yields values of B.gC that are constant for a given
a/W within an average error of 0.70 % over the range
0.1<a/W<0.7.

3. The effective modulus varies with a/W, being near plane
strain for shallow cracks and near plane stress for deep
cracks. Defining a parameter o (Eq 5) such that o =0 and
1 for conditions of plane stress and plane strain, respec-
tively, it is found that « decreases from 0.84 at a/W=0.1
to 0.29 at a/W = 0.7, the average over this interval being
0.47. That is, over the range of interest, the effective mod-
ulus is slightly closer to plane stress than plane strain.

4. Values of a/W calculated from the equation of Cravero
and Ruggieri can be further improved by using the effec-
tive modulus E./E=1+ 0.09890 (for v=0.3) with o
given by Eq 9 and u=1/(1+ \/ (BetCEp5)). This reduces
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the absolute error over the range 0.1 <a/W<0.7 to
0.09 %.

5. By directly fitting the FEA results for 3D plane-sided
SE(T) specimens with H/W =10 and W/B=1, a curve fit
of a/W to the parameter u yields the equation for a/W
given by Eq 10. This equation, valid over the range
0.1 <a/W <0.7, provides values with an average error of
only 0.01 % and is the simplest way to deal with the varia-
tion in constraint between shallow and deep cracks. It
must be emphasized that the modulus to be used in u is
the plane stress modulus E,, =E, and that this curve
fit applies strictly only to the stated geometry, ie.,
H/W =10, W/B=1,and 0.1 <a/W <0.7.
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